Abstract
AbstractStructural variation in plant genomes is a significant driver of phenotypic variability in traits important for the domestication and productivity of crop species. Among these are traits that depend on functional meristems, populations of stem cells maintained by the CLAVATA-WUSCHEL (CLV-WUS) negative feedback-loop that controls the expression of the WUS homeobox transcription factor. WUS function and impact on maize development and yield remain largely unexplored. Here we show that the maize dominantBarren inflorescence3(Bif3) mutant harbors a tandem duplicated copy of theZmWUS1gene,ZmWUS1-B, whose novel promoter enhances transcription in a ring-like pattern. Overexpression ofZmWUS1-Bis due to multimerized binding sites for type-B RESPONSE REGULATORs (RRs), key transcription factors in cytokinin signaling. Hypersensitivity to cytokinin causes stem cell overproliferation and major rearrangements ofBif3inflorescence meristems, leading to the formation of ball-shaped ears and severely affecting productivity. These findings establishZmWUS1as an essential meristem size regulator in maize and highlight the striking effect of cis-regulatory variation on a key developmental program.
Funder
NSF | BIO | Division of Integrative Organismal Systems
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献