Simulating groundstate and dynamical quantum phase transitions on a superconducting quantum computer

Author:

Dborin JamesORCID,Wimalaweera Vinul,Barratt F.,Ostby Eric,O’Brien Thomas E.,Green A. G.ORCID

Abstract

AbstractThe phenomena of quantum criticality underlie many novel collective phenomena found in condensed matter systems. They present a challenge for classical and quantum simulation, in part because of diverging correlation lengths and consequently strong finite-size effects. Tensor network techniques that work directly in the thermodynamic limit can negotiate some of these difficulties. Here, we optimise a translationally invariant, sequential quantum circuit on a superconducting quantum device to simulate the groundstate of the quantum Ising model through its quantum critical point. We further demonstrate how the dynamical quantum critical point found in quenches of this model across its quantum critical point can be simulated. Our approach avoids finite-size scaling effects by using sequential quantum circuits inspired by infinite matrix product states. We provide efficient circuits and a variety of error mitigation strategies to implement, optimise and time-evolve these states.

Funder

RCUK | Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Reference56 articles.

1. Arute, F. et al. Observation of separated dynamics of charge and spin in the fermi-hubbard model. Preprint at https://arxiv.org/abs/2010.07965 (2020).

2. Babbush, R., Berry, D. W. & Neven, H. Quantum simulation of the sachdev-ye-kitaev model by asymmetric qubitization. Phys. Rev. A 99, 040301 (2019).

3. Stanisic, S. et al. Observing ground-state properties of the fermi-hubbard model using a scalable algorithm on a quantum computer. Preprint at https://arxiv.org/abs/2112.02025 (2021).

4. Tazhigulov, R. N. et al. Simulating challenging correlated molecules and materials on the sycamore quantum processor. Preprint at https://arxiv.org/abs/2203.15291 (2022).

5. Satzinger, K. et al. Realizing topologically ordered states on a quantum processor. Science 374, 1237–1241 (2021).

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3