CD8+ T cells maintain killing of MHC-I-negative tumor cells through the NKG2D–NKG2DL axis

Author:

Lerner Emily C.ORCID,Woroniecka Karolina I.,D’Anniballe Vincent M.,Wilkinson Daniel S.,Mohan Aditya A.,Lorrey Selena J.,Waibl-Polania Jessica,Wachsmuth Lucas P.,Miggelbrink Alexandra M.ORCID,Jackson Joshua D.,Cui Xiuyu,Raj Jude A.,Tomaszewski William H.,Cook Sarah L.ORCID,Sampson John H.ORCID,Patel Anoop P.ORCID,Khasraw MustafaORCID,Gunn Michael D.ORCID,Fecci Peter E.ORCID

Abstract

AbstractThe accepted paradigm for both cellular and anti-tumor immunity relies upon tumor cell killing by CD8+T cells recognizing cognate antigens presented in the context of target cell major histocompatibility complex (MHC) class I (MHC-I) molecules. Likewise, a classically described mechanism of tumor immune escape is tumor MHC-I downregulation. Here, we report that CD8+T cells maintain the capacity to kill tumor cells that are entirely devoid of MHC-I expression. This capacity proves to be dependent instead on interactions between T cell natural killer group 2D (NKG2D) and tumor NKG2D ligands (NKG2DLs), the latter of which are highly expressed on MHC-loss variants. Necessarily, tumor cell killing in these instances is antigen independent, although prior T cell antigen-specific activation is required and can be furnished by myeloid cells or even neighboring MHC-replete tumor cells. In this manner, adaptive priming can beget innate killing. These mechanisms are active in vivo in mice as well as in vitro in human tumor systems and are obviated by NKG2D knockout or blockade. These studies challenge the long-advanced notion that downregulation of MHC-I is a viable means of tumor immune escape and instead identify the NKG2D–NKG2DL axis as a therapeutic target for enhancing T cell-dependent anti-tumor immunity against MHC-loss variants.

Funder

Cancer Research Institute Lloyd J. Old STAR Award

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3