Abstract
AbstractThe interaction between high-intensity ultrashort optical pulses and materials has led to a number of fascinating optical phenomena, including Rabi flopping and self-induced transparency. Until now, there have been few reports on ultrashort coherent pulse propagation and reshaping in semiconductor materials. Here we investigate Rabi flopping and Rabi splitting in colloidal quantum dots with Fabry-Perot cavity of SU8/Si. The Rabi flopping phenomenon is monitored via the pump-probe differential reflection spectroscopy. A high excitation power reshapes the temporal oscillations so that the fast Fourier transform spectra display several peaks. The photoluminescence spectrum by continuous-wave excitation splits under a proper incident angle, and the splitted photoluminescence spectrum is generally consistent with the amplitude of differential reflectivity as function of wavelength. These results demonstrate that both of the temporal oscillations and the splitting of the continuous-wave excited photoluminescence spectra are due to strong coupling between colloidal quantum dots and the Fabry-Perot cavity.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献