Terahertz Radiation Detectors Using CMOS Compatible SOI Substrates

Author:

Hasan Md Soyaeb1,Khan Asif Abdullah1,Shahzadi Shamaila12,Bagheri Majid Haji1,Ban Dayan1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering Waterloo Institute for Nanotechnology University of Waterloo 200 University Ave. West Waterloo ON N2L 3G1 Canada

2. Department of Physics University of Engineering and Technology Lahore 54890 Pakistan

Abstract

AbstractIn recent years, silicon‐based room temperature Terahertz (THz) detectors have become the most optimistic research area because of their high speed, low cost, and unimpeded compatibility with mainstream complementary metal‐oxide‐semiconductor (CMOS) device technologies. However, Silicon (Si) suffers from low responsivity and high noise at THz frequencies. In this review, the recent advances in Si‐based THz detectors using silicon‐on‐insulator (SOI) substrates are presented. These offer several advantages over bulk counterparts, such as reduced parasitic capacitance, enhanced electric field confinement, and improved thermal isolation. The different types of THz detectors exploiting SOI substrate, such as conventional metal‐oxide‐semiconductor field effect transistors (MOSFETs), junction‐less MOSFETs, junction‐less nanowires field effect transistors (JLNWFETs), micro‐electromechanical system (MEMS), metal‐semiconductor‐metal (MSM) structures, and single electron transistor (SET), are discussed, and their key performances in terms of responsivity, noise equivalent power (NEP), bandwidth, and dynamic range are compared. The challenges and opportunities for further improvement of SOI THz detectors, such as device scaling, integration, and modulation, are also highlighted. This review may offer compelling evidence supporting the idea that SOI THz detectors have the potential to facilitate high performance, low power consumption, and scalability—qualities essential for advancing next‐level technologies.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3