Reconstruction of unstable heavy particles using deep symmetry-preserving attention networks

Author:

Fenton Michael JamesORCID,Shmakov Alexander,Okawa HidekiORCID,Li Yuji,Hsiao Ko-Yang,Hsu Shih-ChiehORCID,Whiteson DanielORCID,Baldi PierreORCID

Abstract

AbstractReconstructing unstable heavy particles requires sophisticated techniques to sift through the large number of possible permutations for assignment of detector objects to the underlying partons. An approach based on a generalized attention mechanism, symmetry preserving attention networks (SPA-NET), has been previously applied to top quark pair decays at the Large Hadron Collider which produce only hadronic jets. Here we extend the SPA-NET architecture to consider multiple input object types, such as leptons, as well as global event features, such as the missing transverse momentum. In addition, we provide regression and classification outputs to supplement the parton assignment. We explore the performance of the extended capability of SPA-NET in the context of semi-leptonic decays of top quark pairs as well as top quark pairs produced in association with a Higgs boson. We find significant improvements in the power of three representative studies: a search for $$t\bar{t}H$$ t t ¯ H , a measurement of the top quark mass, and a search for a heavy $${Z}^{{\prime} }$$ Z decaying to top quark pairs. We present ablation studies to provide insight on what the network has learned in each case.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hadronic mono-W′ probes of dark matter at colliders;Journal of High Energy Physics;2024-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3