Abstract
Abstract
Particle collisions at the energy frontier can probe the nature of invisible dark matter via production in association with recoiling visible objects. We propose a new potential production mode, in which dark matter is produced by the decay of a heavy dark Higgs boson radiated from a heavy W′ boson. In such a model, motivated by left-right symmetric theories, dark matter would not be pair produced in association with other recoiling objects due to its lack of direct coupling to quarks or gluons. We study the hadronic decay mode via W′ → tb and estimate the LHC exclusion sensitivity at 95% confidence level to be 102 − 105 fb for W′ boson masses between 250 and 1750 GeV.
Publisher
Springer Science and Business Media LLC
Reference62 articles.
1. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].
2. G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
3. R.J. Scherrer and M.S. Turner, On the Relic, Cosmic Abundance of Stable Weakly Interacting Massive Particles, Phys. Rev. D 33 (1986) 1585 [Erratum ibid. 34 (1986) 3263] [INSPIRE].
4. LUX collaboration, Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
5. XENON collaboration, First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment, Phys. Rev. Lett. 131 (2023) 041003 [arXiv:2303.14729] [INSPIRE].