Abstract
AbstractUnidirectional Spin Hall magnetoresistance (USMR) is a non-linear phenomenon recently observed in ferromagnet (FM)/nonmagnetic metal (NM) bilayer structures. Two very different mechanisms of USMR have been proposed; one relies on the current-direction-dependence of electron-magnon scattering in a FM layer, and the other on the current-direction-dependence of the spin accumulation at the FM/NM interface. In this study, we investigate the USMR in epitaxial Cr/Fe bilayers finding that the USMR is significantly enhanced when the Fe magnetization is aligned to a particular crystallographic direction where the magnon magnetoresistance (MMR) by the electron-magnon scattering becomes stronger. This highlights the importance of the electron-magnon scattering for the understanding of USMR in Cr/Fe bilayers. Our result also suggests a route to enhance the efficiency of magnon generation in the magnonic devices. Lastly, we discuss the Ising-type spin exchange as a possible origin of the crystallographic direction dependences of the USMR and the MMR.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献