Abstract
AbstractDespite recent successes in the area of ultrafast manipulation of magnetic order, optical generation and manipulation of complex spin textures is hindered by an insufficient theoretical understanding of underlying processes. In particular an important aspect of subtle connection between the electronic and magnetic degrees of freedom is not properly accounted for in existing theories. Here, we uncover a distinct physical mechanism for imprinting spin chirality into collinear magnets with short laser pulses. By simultaneously treating the laser-ignited evolution of electronic structure and magnetic order, we show that their intertwined dynamics can result in an emergence of quasi-stable chiral states. We find that laser-driven chirality does not require any auxiliary external fields or intrinsic spin–orbit interaction to exist, and it can survive on the time scale of nanoseconds even in the presence of thermal fluctuations, which makes the uncovered mechanism relevant for understanding various optical experiments on magnetic materials. Our findings provide a more detailed perspective of the complex interactions which occur between chiral magnetism and light.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献