Microscopic theory of current-induced skyrmion transport and its application in disordered spin textures

Author:

Östberg Emil,Viñas Boström Emil,Verdozzi Claudio

Abstract

Introduction: Magnetic skyrmions hold great promise for realizing compact and stable memory devices that can be manipulated at very low energy costs via electronic current densities.Methods: In this work, we extend a recently introduced method to describe classical skyrmion textures coupled to dynamical itinerant electrons. In this scheme, the electron dynamics is described via nonequilibrium Green’s function (NEGF) within the generalized Kadanoff–Baym ansatz, and the classical spins are treated via the Landau–Lifshitz–Gilbert equation. Here, the framework is extended to open systems by the introduction of a non-interacting approximation to the collision integral of NEGFs. This, in turn, allows us to perform computations of the real-time response of skyrmions to electronic currents in large quantum systems coupled to electronic reservoirs, which exhibit linear scaling in the number of time steps. We use this approach to investigate how electronic spin currents and dilute spin disorder affect skyrmion transport and the skyrmion Hall drift.Results: Our results show that the skyrmion dynamics is sensitive to a specific form of the spin disorder, such that different disorder configurations lead to qualitatively different skyrmion trajectories for the same applied bias.Discussion: This sensitivity arises from the local spin dynamics around the magnetic impurities, a feature that is expected not to be well-captured by phenomenological or spin-only descriptions. At the same time, our findings illustrate the potential of engineering microscopic impurity patterns to steer skyrmion trajectories.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3