Megahertz single-particle imaging at the European XFEL
-
Published:2020-05-29
Issue:1
Volume:3
Page:
-
ISSN:2399-3650
-
Container-title:Communications Physics
-
language:en
-
Short-container-title:Commun Phys
Author:
Sobolev EgorORCID, Zolotarev Sergei, Giewekemeyer Klaus, Bielecki Johan, Okamoto Kenta, Reddy Hemanth K. N., Andreasson Jakob, Ayyer KartikORCID, Barak ImrichORCID, Bari Sadia, Barty Anton, Bean Richard, Bobkov SergeyORCID, Chapman Henry N.ORCID, Chojnowski Grzegorz, Daurer Benedikt J.ORCID, Dörner Katerina, Ekeberg TomasORCID, Flückiger Leonie, Galzitskaya OxanaORCID, Gelisio LucaORCID, Hauf Steffen, Hogue Brenda G., Horke Daniel A.ORCID, Hosseinizadeh Ahmad, Ilyin Vyacheslav, Jung Chulho, Kim Chan, Kim Yoonhee, Kirian Richard A., Kirkwood HenryORCID, Kulyk Olena, Küpper JochenORCID, Letrun RomainORCID, Loh N. Duane, Lorenzen Kristina, Messerschmidt Marc, Mühlig Kerstin, Ourmazd Abbas, Raab Natascha, Rode Andrei V., Rose MaxORCID, Round Adam, Sato Takushi, Schubert RobinORCID, Schwander Peter, Sellberg Jonas A.ORCID, Sikorski Marcin, Silenzi Alessandro, Song Changyong, Spence John C. H., Stern Stephan, Sztuk-Dambietz Jolanta, Teslyuk Anthon, Timneanu Nicusor, Trebbin Martin, Uetrecht CharlotteORCID, Weinhausen Britta, Williams Garth J., Xavier P. LourduORCID, Xu Chen, Vartanyants Ivan A.ORCID, Lamzin Victor S., Mancuso Adrian, Maia Filipe R. N. C.ORCID
Abstract
AbstractThe emergence of high repetition-rate X-ray free-electron lasers (XFELs) powered by superconducting accelerator technology enables the measurement of significantly more experimental data per day than was previously possible. The European XFEL is expected to provide 27,000 pulses per second, over two orders of magnitude more than any other XFEL. The increased pulse rate is a key enabling factor for single-particle X-ray diffractive imaging, which relies on averaging the weak diffraction signal from single biological particles. Taking full advantage of this new capability requires that all experimental steps, from sample preparation and delivery to the acquisition of diffraction patterns, are compatible with the increased pulse repetition rate. Here, we show that single-particle imaging can be performed using X-ray pulses at megahertz repetition rates. The results obtained pave the way towards exploiting high repetition-rate X-ray free-electron lasers for single-particle imaging at their full repetition rate.
Funder
Vetenskapsrådet Stiftelsen för Strategisk Forskning
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Reference39 articles.
1. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000). 2. Chapman, H. N. et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat. Phys. 2, 839–843 (2006). 3. Chapman, H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011). 4. Aquila, A. L. et al. Time-resolved protein nanocrystallography using an X-ray free-electron laser. Opt. Express 20, 2706–2716 (2012). 5. Boutet, S. et al. High-resolution protein structure determination by serial femtosecond crystallography. Science 337, 362–364 (2012).
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|