Abstract
AbstractAsymmetric inheritance of organelles and compounds between daughter cells is considered a hallmark for differentiation and rejuvenation in stem-like and cancer cells, as much as a mechanism for enhancing resistance in bacteria populations. In non-differentiating homogeneous cancer cells, asymmetric division is still poorly investigated. Here, we present a method based on the binomial partitioning process that allows the measurement of asymmetric organelle partitioning with multiple live cell markers without genetically mutating the cells. We demonstrate our method by measuring simultaneously the partitioning of three cellular elements, i.e., cytoplasm, membrane, and mitochondria in human Jurkat T-cells. We found that although cell cytoplasm is partitioned symmetrically, mitochondria and membrane lipids are asymmetrically partitioned between daughter cells. Moreover, we observe that mitochondria and membrane lipids present a stable positive correlation with cytoplasm, incompatibly with a binomial partition mechanism produced by two independent partitioning processes. Our experimental apparatus, combined with our theoretical framework, could be generalized to different cell kinds, providing a tool for understanding partitioning-driven biological processes.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献