Ionization by XFEL radiation produces distinct structure in liquid water

Author:

Stransky MichalORCID,Lane Thomas J.ORCID,Gorel Alexander,Boutet SébastienORCID,Schlichting IlmeORCID,Mancuso Adrian P.ORCID,Jurek Zoltan,Ziaja Beata

Abstract

AbstractIn the warm dense matter (WDM) regime, where condensed, gas, and plasma phases coexist, matter frequently exhibits unusual properties that cannot be described by contemporary theory. Experiments reporting phenomena in WDM are therefore of interest to advance our physical understanding of this regime, which is found in dwarf stars, giant planets, and fusion ignition experiments. Using 7.1 keV X-ray free electron laser radiation (nominally 5×105 J/cm2), we produced and probed transient WDM in liquid water. Wide-angle X-ray scattering (WAXS) from the probe reveals a new ~9 Å structure that forms within 75 fs. By 100 fs, the WAXS peak corresponding to this new structure is of comparable magnitude to the ambient water peak, which is attenuated. Simulations suggest that the experiment probes a superposition of two regimes. In the first, fluences expected at the focus severely ionize the water, which becomes effectively transparent to the probe. In the second, out-of-focus pump radiation produces O1+ and O2+ ions, which rearrange due to Coulombic repulsion over 10 s of fs. Our simulations account for a decrease in ambient water signal and an increase in low-angle X-ray scattering but not the experimentally observed 9 Å feature, presenting a new challenge for theory.

Funder

Helmholtz Association

Deutsche Forschungsgemeinschaft

U.S. Department of Energy

Foundation for the National Institutes of Health

Deutsches Elektronen-Synchrotron

Polska Akademia Nauk

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3