Electronic density response of warm dense matter

Author:

Dornheim Tobias12ORCID,Moldabekov Zhandos A.12ORCID,Ramakrishna Kushal12ORCID,Tolias Panagiotis3ORCID,Baczewski Andrew D.4ORCID,Kraus Dominik25ORCID,Preston Thomas R.6ORCID,Chapman David A.7ORCID,Böhme Maximilian P.128ORCID,Döppner Tilo9ORCID,Graziani Frank9ORCID,Bonitz Michael10ORCID,Cangi Attila12ORCID,Vorberger Jan2ORCID

Affiliation:

1. Center for Advanced Systems Understanding (CASUS) 1 , D-02826 Görlitz, Germany

2. Helmholtz-Zentrum Dresden-Rossendorf (HZDR) 2 , D-01328 Dresden, Germany

3. Space and Plasma Physics, Royal Institute of Technology (KTH) 3 , Stockholm SE-100 44, Sweden

4. Center for Computing Research, Sandia National Laboratories 4 , Albuquerque, New Mexico 87185, USA

5. Institut für Physik, Universität Rostock 5 , D-18057 Rostock, Germany

6. European XFEL 6 , D-22869 Schenefeld, Germany

7. First Light Fusion 7 , Yarnton, Oxfordshire OX5 1QU, United Kingdom

8. Technische Universität Dresden 8 , D-01062 Dresden, Germany

9. Lawrence Livermore National Laboratory (LLNL) 9 , Livermore, California 94550, USA

10. Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel 10 , D-24098 Kiel, Germany

Abstract

Matter at extreme temperatures and pressures—commonly known as warm dense matter (WDM)—is ubiquitous throughout our Universe and occurs in astrophysical objects such as giant planet interiors and brown dwarfs. Moreover, WDM is very important for technological applications such as inertial confinement fusion and is realized in the laboratory using different techniques. A particularly important property for the understanding of WDM is given by its electronic density response to an external perturbation. Such response properties are probed in x-ray Thomson scattering (XRTS) experiments and are central for the theoretical description of WDM. In this work, we give an overview of a number of recent developments in this field. To this end, we summarize the relevant theoretical background, covering the regime of linear response theory and nonlinear effects, the fully dynamic response and its static, time-independent limit, and the connection between density response properties and imaginary-time correlation functions (ITCF). In addition, we introduce the most important numerical simulation techniques, including path-integral Monte Carlo simulations and different thermal density functional theory (DFT) approaches. From a practical perspective, we present a variety of simulation results for different density response properties, covering the archetypal model of the uniform electron gas and realistic WDM systems such as hydrogen. Moreover, we show how the concept of ITCFs can be used to infer the temperature from XRTS measurements of arbitrary complex systems without the need for any models or approximations. Finally, we outline a strategy for future developments based on the close interplay between simulations and experiments.

Funder

Sächsisches Staatsministerium für Wissenschaft und Kunst

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3