Abstract
AbstractIn our modern time, travel has become one of the most significant factors contributing to global epidemic spreading. A deficiency in the literature is that travel has largely been treated as a Markovian process: it occurs instantaneously without any memory effect. To provide informed policies such as determining the mandatory quarantine time, the non-Markovian nature of real-world traveling must be taken into account. We address this fundamental problem by constructing a network model in which travel takes a finite time and infections can occur during the travel. We find that the epidemic threshold can be maximized by a proper level of travel, implying that travel infections do not necessarily promote spreading. More importantly, the epidemic threshold can exhibit a two-threshold phenomenon in that it can increase abruptly and significantly as the travel time exceeds a critical value. This may provide a quantitative estimation of the minimally required quarantine time in a pandemic.
Funder
Science and Technology Commission of Shanghai Municipality
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献