Epidemic dynamics with non-Markovian travel in multilayer networks

Author:

Chen YushuORCID,Liu YingORCID,Tang MingORCID,Lai Ying-ChengORCID

Abstract

AbstractIn our modern time, travel has become one of the most significant factors contributing to global epidemic spreading. A deficiency in the literature is that travel has largely been treated as a Markovian process: it occurs instantaneously without any memory effect. To provide informed policies such as determining the mandatory quarantine time, the non-Markovian nature of real-world traveling must be taken into account. We address this fundamental problem by constructing a network model in which travel takes a finite time and infections can occur during the travel. We find that the epidemic threshold can be maximized by a proper level of travel, implying that travel infections do not necessarily promote spreading. More importantly, the epidemic threshold can exhibit a two-threshold phenomenon in that it can increase abruptly and significantly as the travel time exceeds a critical value. This may provide a quantitative estimation of the minimally required quarantine time in a pandemic.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3