Optimizing information-driven awareness allocation for controlling activity-triggered epidemic spread

Author:

Chen JieORCID,Hu MaobinORCID,Cao JindeORCID

Abstract

Abstract In the contemporary era, the advent of epidemics instigates a substantial upswing in relevant information dissemination, bolstering individuals’ resistance to infection by concurrently reducing activity contacts and reinforcing personal protective measures. To elucidate this intricate dynamics, we introduce a composite four-layer network model designed to capture the interplay among information-driven awareness, human activity, and epidemic spread, with a focus on the allocation of individuals’ limited attention in diminishing activity frequency and self-infection rates. One intriguing observation from our findings is an anomalous, concave non-monotonic relationship between awareness trade-off and epidemic spread, with a more pronounced prevalence at an intermediate least awareness efficacy. This underscores the inadvisability of relaxing self-protection through reduced activity frequency or compensating for increased activity frequency by enhancing self-protection. Especially noteworthy is the significance of enhancing self-protection in response to heightened information dissemination and inherent activity demands to curtail infection risk. However, in scenarios with increasing ancillary activity frequency, the emphasis should exclusively shift towards reducing activity exposure. The model establishes a theoretical threshold for accurately predicting awareness efficacy in epidemic outbreaks. Optimal awareness allocation consistently resides at the extremes—either completely avoiding unnecessary activity contact or adopting full self-protection. This guidance, contingent on information level and activity demand, offers valuable insights into the delicate balance between individual behaviors and epidemic prevention.

Funder

China Postdoctoral Science Foundation, China

Key Project of Natural Science Foundation of China

National Key Research and Development Project of China

National Natural Science Foundation of China

Jiangsu Funding Program for Excellent Postdoctoral Talent

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3