Mining genetic and transcriptomic data using machine learning approaches in Parkinson’s disease

Author:

Su Chang,Tong Jie,Wang FeiORCID

Abstract

AbstractHigh-throughput techniques have generated abundant genetic and transcriptomic data of Parkinson’s disease (PD) patients but data analysis approaches such as traditional statistical methods have not provided much in the way of insightful integrated analysis or interpretation of the data. As an advanced computational approach, machine learning, which enables people to identify complex patterns and insight from data, has consequently been harnessed to analyze and interpret large, highly complex genetic and transcriptomic data toward a better understanding of PD. In particular, machine learning models have been developed to integrate patient genotype data alone or combined with demographic, clinical, neuroimaging, and other information, for PD outcome study. They have also been used to identify biomarkers of PD based on transcriptomic data, e.g., gene expression profiles from microarrays. This study overviews the relevant literature on using machine learning models for genetic and transcriptomic data analysis in PD, points out remaining challenges, and suggests future directions accordingly. Undoubtedly, the use of machine learning is amplifying PD genetic and transcriptomic achievements for accelerating the study of PD. Existing studies have demonstrated the great potential of machine learning in discovering hidden patterns within genetic or transcriptomic information and thus revealing clues underpinning pathology and pathogenesis. Moving forward, by addressing the remaining challenges, machine learning may advance our ability to precisely diagnose, prognose, and treat PD.

Funder

Michael J. Fox Foundation for Parkinson’s Research

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3