High responsivity in MoS2 phototransistors based on charge trapping HfO2 dielectrics

Author:

Nur RodaORCID,Tsuchiya TakashiORCID,Toprasertpong KasiditORCID,Terabe Kazuya,Takagi Shinichi,Takenaka Mitsuru

Abstract

Abstract2D Transition Metal Dichalcogenides hold a promising potential in future optoelectronic applications due to their high photoresponsivity and tunable band structure for broadband photodetection. In imaging applications, the detection of weak light signals is crucial for creating a better contrast between bright and dark pixels in order to achieve high resolution images. The photogating effect has been previously shown to offer high light sensitivities; however, the key features required to create this as a dominating photoresponse has yet to be discussed. Here, we report high responsivity and high photogain MoS2 phototransistors based on the dual function of HfO2 as a dielectric and charge trapping layer to enhance the photogating effect. As a result, these devices offered a very large responsivity of 1.1 × 106 A W−1, a photogain >109, and a detectivity of 5.6 × 1013 Jones under low light illumination. This work offers a CMOS compatible process and technique to develop highly photosensitive phototransistors for future low-powered imaging applications.

Funder

New Energy and Industrial Technology Development Organization

MEXT | National Institute for Materials Science

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3