Prediction of structure and cation ordering in an ordered normal-inverse double spinel

Author:

Pilania GhanshyamORCID,Kocevski Vancho,Valdez James A.,Kreller Cortney R.ORCID,Uberuaga Blas P.ORCID

Abstract

Abstract Spinels represent an important class of technologically relevant materials, used in diverse applications ranging from dielectrics, sensors and energy materials. While solid solutions combining two “single spinels” have been explored in a number of past studies, no ordered “double” spinels have been reported. Based on our first principles computations, here we predict the existence of such a double spinel compound MgAlGaO4, formed by an equimolar mixing of MgAl2O4 normal and MgGa2O4 inverse spinels. After studying the details of its atomic and electronic structure, we use a cluster expansion based effective Hamiltonian approach with Monte Carlo simulations to study the thermodynamic behavior and cation distribution as a function of temperature. Our simulations provide strong evidence for short-ranged cation order in the double spinel structure, even at significantly elevated temperatures. Finally, an attempt was made to synthesize the predicted double spinel compound. Energy Dispersive X-ray Spectrometry and X-ray diffraction Rietveld refinements were performed to characterize the single-phase chemical composition and local configurational environments, which showed a favorable agreement with the theoretical predictions. These findings suggest that a much larger number of compounds can potentially be realized within this chemical space, opening new avenues for the design of spinel-structured materials with tailored functionality.

Funder

DOE | SC | Basic Energy Sciences

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3