Bio-inspired selective nodal decoupling for ultra-compliant interwoven lattices

Author:

Mistry Yash,Weeger Oliver,Morankar SwapnilORCID,Shinde Mandar,Liu Siying,Chawla Nikhilesh,Chen XiangfanORCID,Penick Clint A.,Bhate DhruvORCID

Abstract

AbstractArchitected materials such as lattices are capable of demonstrating extraordinary mechanical performance. Lattices are often used for their stretch-dominated behavior, which gives them a high degree of stiffness at low-volume fractions. At the other end of the stiffness spectrum, bending-dominated lattices tend to be more compliant and are of interest for their energy absorption performance. Here, we report a class of ultra-compliant interwoven lattices that demonstrate up to an order of magnitude improvement in compliance over their traditional counterparts at similar volume fractions. This is achieved by selectively decoupling nodes and interweaving struts in bending-dominated lattices, inspired by observations of this structural principle in the lattice-like arrangement of the Venus flower basket sea sponge. By decoupling nodes in this manner, we demonstrate a simple and near-universal design strategy for modulating stiffness in lattice structures and achieve among the most compliant lattices reported in the literature.

Funder

NASA | Glenn Research Center

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3