Classification and Selection of Cellular Materials in Mechanical Design: Engineering and Biomimetic Approaches

Author:

Bhate Dhruv,Penick Clint,Ferry Lara,Lee Christine

Abstract

Recent developments in design and manufacturing have greatly expanded the design space for functional part production by enabling control of structural details at small scales to inform behavior at the whole-structure level. This can be achieved with cellular materials, such as honeycombs, foams and lattices. Designing structures with cellular materials involves answering an important question: What is the optimum unit cell for the application of interest? There is currently no classification framework that describes the spectrum of cellular materials, and no methodology to guide the designer in selecting among the infinite list of possibilities. In this paper, we first review traditional engineering methods currently in use for selecting cellular materials in design. We then develop a classification scheme for the different types of cellular materials, dividing them into three levels of design decisions: tessellation, element type and connectivity. We demonstrate how a biomimetic approach helps a designer make decisions at all three levels. The scope of this paper is limited to the structural domain, but the methodology developed here can be extended to the design of components in thermal, fluid, optical and other areas. A deeper purpose of this paper is to demonstrate how traditional methods in design can be combined with a biomimetic approach.

Funder

The Biomimicry Center

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

Reference83 articles.

1. Shapes: Nature’s Patterns: A Tapestry in Three Parts;Ball,2009

2. Architected Cellular Materials

3. Metal Foams: A Design Guide;Ashby,2000

4. Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada

5. Rerum Rusticarum Libri III;Varro,1800

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3