Prolonged photostability in hexagonal boron nitride quantum emitters

Author:

Li Sylvia Xin,Ichihara Takeo,Park Hyoju,He Guangwei,Kozawa DaichiORCID,Wen Yi,Koman Volodymyr B.ORCID,Zeng YuwenORCID,Kuehne MatthiasORCID,Yuan Zhe,Faucher Samuel,Warner Jamie H.ORCID,Strano Michael S.ORCID

Abstract

AbstractSingle-photon emitters are crucial building blocks for optical quantum technologies. Hexagonal boron nitride (hBN) is a promising two-dimensional material that hosts bright, room-temperature single-photon emitters. However, photo instability is a persistent challenge preventing practical applications of these properties. Here, we reveal the ubiquitous photobleaching of hBN vacancy emitters. Independent of the source or the number of hBN layers, we find that the photobleaching of a common emission at 1.98 ± 0.05 eV can be described by two consistent time constants, namely a first bleaching lifetime of 5 to 10 s, and a second bleaching lifetime in the range of 150 to 220 s. Only the former is environmentally sensitive and can be significantly mitigated by shielding O2, whereas the latter could be the result of carbon-assisted defect migration. Annular dark-field scanning transmission electron microscopy of photobleached hBN allows for visualizing vacancy defects and carbon substitution at single atom resolution, supporting the migration mechanism along with X-ray photoelectron spectroscopy. Thermal annealing at 850 °C of liquid exfoliated hBN eliminates both bleaching processes, leading to persistent photostability. These results represent a significant advance to potentially engineer hBN vacancy emitters with the photostability requisite for quantum applications.

Funder

United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3