Abstract
AbstractBoron-based two-dimensional materials are of interest for use in electronic devices and catalytic applications, for which it is important that they are chemically stable. Here, we explore the chemical stability of hydrogen boride nanosheets in water. Experiments reveal that mixing hydrogen boride and water produces negligible amounts of hydrogen, suggesting that hydrolysis does not occur and that hydrogen boride is stable in water, which is in contrast to most boron hydride materials. First-principles calculations reveal that the sheets interact weakly with water even in the presence of defects and that negatively charged boron prevents the onset of hydrolysis. We conclude that the charge state of boron and the covalent boron-boron bond network are responsible for the chemical and structural stability. On the other hand, we found that proton exchange with hydrogen boride nanosheets does occur in water, indicating that they become acidic in the presence of water.
Funder
DOST | National Research Council of the Philippines
MEXT | Japan Society for the Promotion of Science
Kumagai Foundation for Science and Technology
Ogasawara Foundation for the Promotion of Science and Engineering
- Samco foundations for the Promotion of Science & Engineering - MHI Innovation Accelerator LLC
The Tokyo Electron Ltd
Publisher
Springer Science and Business Media LLC
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献