Author:
Choe Jong Hyeak,Park Jeoung Ryul,Chae Yun Seok,Kim Dae Won,Choi Doo San,Kim Hyojin,Kang Minjung,Seo Hwimin,Park Yong-Ki,Hong Chang Seop
Abstract
AbstractAlthough metal-organic framework (MOF) powders can be successfully shaped by conventional methods, postsynthetic functionalization of the shaped MOFs remains almost unexplored, yet is required to overcome intrinsic limitations, such as CO2 adsorption capacity and stability. Here, we present a scalable synthesis method for Mg2(dobpdc) MOF and its shaped beads, which are obtained by using a spray dry method after mixing Mg2(dobpdc) powders with alumina sol. The synthesized MOF/Al beads have micron-sized diameters with a moderate particle size distribution of 30–70 μm. They also maintain a high mechanical strength. N-ethylethylenediamine (een) functionalization and coating with long alkyl chain silanes results in een-MOF/Al-Si, which exhibits a significant working capacity of >11 wt% CO2 capture and high hydrophobicity. The een-MOF/Al-Si microbeads retain their crystallinity and improved CO2 uptake upon exposure to humid conditions for three days at a desorption temperature of 140 °C.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献