Volcanic forcing of high-latitude Northern Hemisphere eruptions

Author:

Fuglestvedt Herman F.ORCID,Zhuo ZhihongORCID,Toohey Matthew,Krüger KirstinORCID

Abstract

AbstractHigh-latitude explosive volcanic eruptions can cause substantial hemispheric cooling. Here, we use a whole-atmosphere chemistry-climate model to simulate Northern Hemisphere (NH) high-latitude volcanic eruptions of magnitude similar to the 1991 Mt. Pinatubo eruption. Our simulations reveal that the initial stability of the polar vortex strongly influences sulphur dioxide lifetime and aerosol growth by controlling the dispersion of injected gases after such eruptions in winter. Consequently, atmospheric variability introduces a spread in the cumulative aerosol radiative forcing of more than 20%. We test the aerosol evolution’s sensitivity to co-injection of sulphur and halogens, injection season, and altitude, and show how aerosol processes impact radiative forcing. Several of these sensitivities are of similar magnitude to the variability stemming from initial conditions, highlighting the significant influence of atmospheric variability. We compare the modelled volcanic sulphate deposition over the Greenland ice sheet with the relationship assumed in reconstructions of past NH eruptions. Our analysis yields an estimate of the Greenland transfer function for NH extratropical eruptions that, when applied to ice core data, produces volcanic stratospheric sulphur injections from NH extratropical eruptions 23% smaller than in currently used volcanic forcing reconstructions. Furthermore, the transfer function’s uncertainty, which propagates into the estimate of sulphur release, needs to be at least doubled to account for atmospheric variability and unknown eruption parameters. Our results offer insights into the processes shaping the climatic impacts of NH high-latitude eruptions and highlight the need for more accurate representation of these events in volcanic forcing reconstructions.

Funder

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3