Abstract
AbstractRapid Arctic warming has altered the regional hydrological cycle through reduction in Arctic sea ice. Observational and modeling efforts provided evidence that the enhanced evaporation from the Arctic Ocean could increase snowfall over high latitude terrestrial zones. However, questions remain regarding the amount of equatorward moisture transport and its change over the decadal timescale. Here we show that the transport of atmospheric moisture to Siberia that originated from Arctic Ocean evaporation has increased significantly in autumn to early winter during 1981–2019 when substantial sea ice retreat was observed. The enhanced Arctic moisture content is found in western Siberia in September, consistent with the observed increase in snow cover investigated in earlier studies. Meanwhile, the annual maximum daily amount of Arctic moisture shows a sharp increase in eastern Siberia during October–December associated with cyclonic activities along coastal regions. Our results suggest the importance of monitoring equatorward moisture transport during snow accumulation seasons because it could enhance local snowstorms as evaporation from the Arctic Ocean increases in the near future.
Funder
MEXT | Japan Society for the Promotion of Science
Ministry of Education, Culture, Sports, Science and Technology
MEXT | JST | Strategic International Collaborative Research Program
Publisher
Springer Science and Business Media LLC
Subject
Atmospheric Science,Environmental Chemistry,Global and Planetary Change
Reference42 articles.
1. IPCC. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge University Press, 2021).
2. Coumou, D., Di Capua, G., Vavrus, S., Wang, L. & Wang, S. The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun. 9, 1–12 (2018).
3. Dai, A., Luo, D., Song, M. & Liu, J. Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun. 10, 1–13 (2019).
4. Matsumura, S., Yamazaki, K. & Sato, T. Role of Siberian land-atmosphere coupling in the development of the August Okhotsk high in 2008. J. Meteor. Soc. Jpn. 93, 229–244 (2015).
5. Nakamura, T., Yamazaki, K., Sato, T. & Ukita, J. Memory effects of Eurasian land processes cause enhanced cooling in response to sea ice loss. Nat. Commun. 10, 1–8 (2019).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献