Hydroclimatic anomalies detected by a sub-decadal diatom oxygen isotope record of the last 220 years from Lake Khamra, Siberia
-
Published:2024-04-11
Issue:4
Volume:20
Page:909-933
-
ISSN:1814-9332
-
Container-title:Climate of the Past
-
language:en
-
Short-container-title:Clim. Past
Author:
Stieg AmelieORCID, Biskaborn Boris K.ORCID, Herzschuh Ulrike, Strauss JensORCID, Pestryakova Luidmila, Meyer HannoORCID
Abstract
Abstract. Northern latitudes have been significantly impacted by recent climate warming, which has increased the probability of experiencing extreme weather events. To comprehensively understand hydroclimate change and reconstruct hydroclimatic anomalies such as drought periods, appropriate proxy records reaching further back in time beyond meteorological measurements are needed. Here we present a 220-year (2015–1790 CE), continuous, stable oxygen isotope record of diatoms (δ18Odiatom) from Lake Khamra (59.99° N, 112.98° E) in eastern Siberia, an area highly sensitive to climate change and for which there is a demand for palaeohydrological data. This high-resolution proxy record was obtained from a 210Pb–137Cs-dated sediment short core and analysed to reconstruct hydroclimate variability at a sub-decadal scale. The interpretation of the δ18Odiatom record is supported by meteorological data, modern isotope hydrology and geochemical analyses of the same sediment, which is indicative of the conditions in the lake and catchment. A comparison with meteorological data going back to 1930 CE revealed that the δ18Odiatom record of Lake Khamra is primarily influenced by regional precipitation changes rather than the air temperature. We identified winter precipitation, which enters the lake as isotopically depleted snowmelt water, as the key process impacting the diatom isotope variability. We related the overall depletion of δ18Odiatom in recent decades to an observed increase in winter precipitation in the area, likely associated with the global air temperature rise, Arctic sea ice retreat and increased moisture transport inland. Available palaeoclimate proxy records, including a fire reconstruction for the same lake, support the idea that the new record is a valuable hydroclimate proxy that is indicative of precipitation deficits and excludes solar insolation and air temperature as primary driving forces, even before the first meteorological recordings. We propose two possible hydroclimatic anomalies that were detected in the Lake Khamra δ18Odiatom record: one at the beginning of the 19th century and a second prominent event in the 1950s. Both are interpreted as prolonged dry periods associated with enriched δ18Odiatom values likely caused by reduced winter precipitation, which coincide with phases of reconstructed severe wildfires in the region. Despite the apparent pristine lake area, we observed a three- to fourfold increase in mercury concentrations and accumulation rates within the sediment record since the early 20th century, which is partly attributed to human air pollution.
Funder
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research
Publisher
Copernicus GmbH
Reference122 articles.
1. Appleby, P. G., Nolan, P. J., Gifford, D. W., Godfrey, M. J., Oldfield, F., Anderson, N. J., and Battarbee, R. W.: 210Pb dating by low background gamma counting, Hydrobiologia, 143, 21–27, https://doi.org/10.1007/bf00026640, 1986. 2. Bailey, H., Hubbard, A., Klein, E. S., Mustonen, K.-R., Akers, P. D., Marttila, H., and Welker, J. M.: Arctic sea-ice loss fuels extreme European snowfall, Nat. Geosci., 14, 283–288, https://doi.org/10.1038/s41561-021-00719-y, 2021. 3. Bintanja, R.: The impact of Arctic warming on increased rainfall, Sci. Rep., 8, 16001, https://doi.org/10.1038/s41598-018-34450-3, 2018. 4. Bintanja, R. and Selten, F. M.: Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat, Nature, 509, 479–482, https://doi.org/10.1038/nature13259, 2014. 5. Biskaborn, B. K., Herzschuh, U., Bolshiyanov, D., Savelieva, L., and Diekmann, B.: Environmental variability in northeastern Siberia during the last ∼ 13,300 yr inferred from lake diatoms and sediment–geochemical parameters, Palaeogeogr. Palaeoclim. Palaeoecol., 329–330, 22–36, https://doi.org/10.1016/j.palaeo.2012.02.003, 2012.
|
|