Real-time single particle characterization of oxidized organic aerosols in the East China Sea

Author:

Liu ZheORCID,Chen HuiORCID,Li Li,Xie Guangzhao,Ouyang Huiling,Tang Xu,Ju Ruiting,Li Bo,Zhang RenheORCID,Chen JianminORCID

Abstract

AbstractKnowledge of the chemical characteristics and sources of organic aerosols (OA) over marine is needed for evaluating their effects on climate change and air quality. Here, a quadrupole aerosol chemical speciation monitor (Q-ACSM) and a single-particle aerosol mass spectrometry (SPAMS) were synchronously employed to investigate the chemical composition, mixing state, and oxidation degree of oxidized organic aerosols (OOA) in PM1 over the East China Sea (ECS) from 3 to 27 June 2017. Both aerosol mass spectrometers demonstrated that a higher oxidation state of OOA in aerosol particles could be generated during marine air mass-dominated periods (MDP) than that generated during land air mass-dominated periods (LDP). Two OOA factors including semi-volatile oxidized organic aerosol (SV-OOA) and low-volatility oxidized organic aerosol (LV-OOA) were distinguished based on Q-ACSM. Fifty-seven percent of the total detected particles with obvious signals of organic markers were identified as oxidized organic carbon (OOC) particles via SPAMS and further divided into lower oxidized organic carbon (LOOC) particles and more oxidized organic carbon (MOOC) particles. All OOC-containing particles were clustered into seven particle subgroups. The EC and K subgroups dominated the LOOC and MOOC particles, respectively, during periods controlled by land air masses, indicating that notable OOC formation was influenced by continental sources. OOA with higher oxygen states were found to dominate near ports. This suggested that OOA chemical characteristics over the ESC are seriously affected by continental, ship, and port emissions, which should be synergistically considered in evaluating their effects on solar radiation transfer and cloud processes.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3