Abstract
AbstractPrecipitation recycling is essential to sustaining regional ecosystems and water supplies, and it is impacted by land development and climate change. This is especially true in the tropics, where dense vegetation greatly influences recycling. Unfortunately, large-scale models of recycling often exhibit high uncertainty, complicating efforts to estimate recycling. Here, we examine how deuterium excess (d-excess), a stable-isotope quantity sensitive to recycling effects, acts as an observational proxy for recycling. While past studies have connected variability in d-excess to precipitation origins at local or regional scales, our study leverages >3000 precipitation isotope samples to quantitatively compare d-excess against three contemporary recycling models across the global tropics. Using rank-correlation, we find statistically significant agreement ($$\bar \tau = 0.52$$
τ
¯
=
0.52
to $$0.70$$
0.70
) between tropical d-excess and recycling that is strongly mediated by seasonal precipitation, vegetation density, and scale mismatch. Our results detail the complex relationship between d-excess and precipitation recycling, suggesting avenues for further investigation.
Publisher
Springer Science and Business Media LLC
Subject
Atmospheric Science,Environmental Chemistry,Global and Planetary Change
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献