Radical hydrodifluoromethylation of unsaturated C−C bonds via an electroreductively triggered two-pronged approach

Author:

Kim Seonyoung,Hwang Keon Ha,Park Hyeong Gyu,Kwak JaesungORCID,Lee HyukORCID,Kim HyunwooORCID

Abstract

AbstractDue to its superior ability in controlling pharmaceutical activity, the installation of difluoromethyl (CF2H) functionality into organic molecules has been an area of intensive research. In this context, difluoromethylation of C−C π bonds mediated by a CF2H radical have been pursued as a central strategy to grant access to difluoromethylated hydrocarbons. However, early precedents necessitate the generation of oxidative chemical species that can limit the generality and utility of the reaction. We report here the successful implementation of radical hydrodifluoromethylation of unsaturated C−C bonds via an electroreductively triggered two-pronged approach. Preliminary mechanistic investigations suggest that the key distinction of the present strategy originates from the reconciliation of multiple redox processes under highly reducing electrochemical conditions. The reaction conditions can be chosen based on the electronic properties of the alkenes of interest, highlighting the hydrodifluoromethylation of both unactivated and activated alkenes. Notably, the reaction delivers geminal (bis)difluoromethylated products from alkynes in a single step by consecutive hydrodifluoromethylation, granting access to an underutilized 1,1,3,3-tetrafluoropropan-2-yl functional group. The late-stage hydrodifluoromethylation of densely functionalized pharmaceutical agents is also presented.

Funder

Korea Research Institute of Chemical Technology

National Research Foundation of Korea

Korea Basic Science Institute

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Biochemistry,Environmental Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3