Real time object detection using LiDAR and camera fusion for autonomous driving

Author:

Liu Haibin,Wu Chao,Wang Huanjie

Abstract

AbstractAutonomous driving has been widely applied in commercial and industrial applications, along with the upgrade of environmental awareness systems. Tasks such as path planning, trajectory tracking, and obstacle avoidance are strongly dependent on the ability to perform real-time object detection and position regression. Among the most commonly used sensors, camera provides dense semantic information but lacks accurate distance information to the target, while LiDAR provides accurate depth information but with sparse resolution. In this paper, a LiDAR-camera-based fusion algorithm is proposed to improve the above-mentioned trade-off problems by constructing a Siamese network for object detection. Raw point clouds are converted to camera planes to obtain a 2D depth image. By designing a cross feature fusion block to connect the depth and RGB processing branches, the feature-layer fusion strategy is applied to integrate multi-modality data. The proposed fusion algorithm is evaluated on the KITTI dataset. Experimental results demonstrate that our algorithm has superior performance and real-time efficiency. Remarkably, it outperforms other state-of-the-art algorithms at the most important moderate level and achieves excellent performance at the easy and hard levels.

Funder

National Key Research and Development Program of China

R&D Program of Beijing Municipal Education Commission

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3