Detección de participantes del tráfico en entornos urbanos sobre imágenes RGB y nubes de puntos 3D
-
Published:2024-07-12
Issue:45
Volume:
Page:
-
ISSN:3045-4093
-
Container-title:Jornadas de Automática
-
language:
-
Short-container-title:JA-CEA
Author:
Montenegro Navarro JorgeORCID, García Guillén Alberto, Castro Payán Francisco ManuelORCID, Martínez Rodríguez Jorge LuisORCID, Morales Rodríguez JesúsORCID
Abstract
Este artículo plantea el desarrollo de un entorno de pruebas para la detección de participantes del tráfico en entornos urbanos, mediante redes neuronales a partir del procesamiento de los datos procedentes de los sensores del vehículo: una cámara RGB y un sensor LiDAR 3D. Para ello se presenta la integración del simulador realista CARLA (Car Learning to Act), que permite la recreación de escenarios urbanos complejos, junto a ROS2 (Robot Operating System), que es un entorno para la creación de aplicaciones robóticas. En concreto, se evalúa cualitativamente el rendimiento de la red CNN (Convolutional Neural Network) YOLOv8 y la red transformadora especializada en detección DETR (Detection Transformer) para el caso de imágenes RGB. De forma análoga, para la detección de participantes del tráfico en nubes de puntos se analizan las redes PV-RCNN (PointVoxel Regional based Convolutional Neural Network) y su evolución Part-A2-Net.
Publisher
Universidade da Coruna
Reference19 articles.
1. Balasubramaniam, A., Pasricha, S., 2022. Object detection in autonomous vehicles: Status and open challenges. arXiv preprint arXiv:2201.07706. DOI: 10.48550/arXiv.2201.07706 2. Biswas, A., Wang, H.-C., 2023. Autonomous vehicles enabled by the integration of IoT, edge intelligence, 5G, and blockchain. Sensors 23 (4). DOI: 10.3390/s23041963 3. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S., 2020. End-to-End Object Detection with Transformers. Springer International Publishing, pp. 213–229. DOI: 10.1007/978-3-030-58452-8 13 4. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V., 2017. Carla: An open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning. Proceedings of Machine Learning Research, pp. 1–16. DOI: 10.48550/arXiv.1711.03938 5. Fischer, T., Vollprecht, W., Traversaro, S., Yen, S., Herrero, C., Milford, M., 2021. A robostack tutorial: Using the robot operating system alongside the conda and jupyter data science ecosystems. IEEE Robotics and Automation Magazine. DOI: 10.1109/MRA.2021.3128367
|
|