Photoelectrochemical and crystalline properties of a GaN photoelectrode loaded with α-Fe2O3 as cocatalyst

Author:

Velazquez-Rizo Martin,Iida Daisuke,Ohkawa Kazuhiro

Abstract

AbstractNitrides are of particular interest in energy applications given their suitability to photocatalytically generate H2 from aqueous solutions. However, one of the drawbacks of nitrides is the decomposition they suffer when used in photoelectrochemical cells. Here, we report the improvement of the catalytic performance and chemical stability of a GaN electrode when it is decorated with Fe2O3 particles compared with an undecorated electrode. Our results show a higher reaction rate in the Fe2O3/GaN electrode, and that photocorrosion marks take more than 20 times longer to appear on it. We also characterized the crystalline properties of the Fe2O3 particles with transmission electron microscopy. The results show that the Fe2O3 particles keep an epitaxial relationship with GaN that follows the Fe2O3$$\{{0003}\}||$${0003}||GaN$$\{{0001}\}$${0001} and Fe2O3$$[{11{\bar{ 2}}0}]||$$[112¯0]||GaN$$[{1{\bar{ 1}}00}]$$[11¯00] symmetry constraints. We also characterized an Fe2O3 (thin film)/GaN electrode, however it did not present any catalytic improvement compared with a bare GaN electrode. The epitaxial relationship found between the Fe2O3 thin film and GaN exhibited the Fe2O3$$\{{11{\bar{ 2}}0}\}||$${112¯0}||GaN$$\{{0002}\}$${0002} and Fe2O3$$[ {3{\bar{ 3}}00} ]||$$[33¯00]||GaN$$[{11{\bar{ 2}}0}]$$[112¯0] symmetry constraints.

Funder

King Abdullah University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3