Area under the expiratory flow-volume curve: predicted values by artificial neural networks

Author:

Ioachimescu Octavian C.,Stoller James K.,Garcia-Rio Francisco

Abstract

AbstractArea under expiratory flow-volume curve (AEX) has been proposed recently to be a useful spirometric tool for assessing ventilatory patterns and impairment severity. We derive here normative reference values for AEX, based on age, gender, race, height and weight, and by using artificial neural network (ANN) algorithms. We analyzed 3567 normal spirometry tests with available AEX values, performed on subjects from two countries (United States and Spain). Regular linear or optimized regression and ANN models were built using traditional predictors of lung function. The ANN-based models outperformed the de novo regression-based equations for AEXpredicted and AEX z scores using race, gender, age, height and weight as predictor factors. We compared these reference values with previously developed equations for AEX (by gender and race), and found that the ANN models led to the most accurate predictions. When we compared the performance of ANN-based models in derivation/training, internal validation/testing, and external validation random groups, we found that the models based on pooling samples from various geographic areas outperformed the other models (in both central tendency and dispersion of the residuals, ameliorating any cohort effects). In a geographically diverse cohort of subjects with normal spirometry, we computed by both regression and ANN models several predicted equations and z scores for AEX, an alternative measurement of respiratory function. We found that the dynamic nature of the ANN allows for continuous improvement of the predictive models’ performance, thus promising that the AEX could become an essential tool in assessing respiratory impairment.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3