Area under the expiratory flow-volume curve: predicted values by regression and deep learning methods and recommendations for clinical practice

Author:

Ioachimescu Octavian CORCID,Ramos José A,Hoffman Michael,Stoller James K

Abstract

BackgroundIn spirometry, the area under expiratory flow-volume curve (AEX-FV) was found to perform well in diagnosing and stratifying physiologic impairments, potentially lessening the need for complex lung volume testing. Expanding on prior work, this study assesses the accuracy and the utility of several models of estimating AEX-FV based on forced vital capacity (FVC) and several instantaneous flows. These models could be incorporated in regular spirometry reports, especially when actual AEX-FV measurements are not available.MethodsWe analysed 4845 normal spirometry tests, performed on 3634 non-smoking subjects without known respiratory disease or complaints. Estimated AEX-FV was computed based on FVC and several flows: peak expiratory flow, isovolumic forced expiratory flow at 25%, 50% and 75% of FVC (FEF25, FEF50 and FEF75, respectively). The estimations were based on simple regression with and without interactions, by optimised regression models and by a deep learning algorithm that predicted the response surface of AEX-FV without interference from any predictor collinearities or normality assumption violations.ResultsMedian/IQR of actual square root of AEX-FV was 3.8/3.1–4.5 L2/s. The per cent of variance (R2) explained by the models selected was very high (>0.990), the effect of collinearities was negligible and the use of deep learning algorithms likely unnecessary for regular or routine pulmonary function testing laboratory usage.ConclusionsIn the absence of actual AEX-FV, a simple regression model without interactions between predictors or use of optimisation techniques can provide a reasonable estimation for clinical practice, thus making AEX-FV an easily available additional tool for interpreting spirometry.

Publisher

BMJ

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3