Combining machine learning and conventional statistical approaches for risk factor discovery in a large cohort study

Author:

Madakkatel Iqbal,Zhou Ang,McDonnell Mark D.,Hyppönen Elina

Abstract

AbstractWe present a simple and efficient hypothesis-free machine learning pipeline for risk factor discovery that accounts for non-linearity and interaction in large biomedical databases with minimal variable pre-processing. In this study, mortality models were built using gradient boosting decision trees (GBDT) and important predictors were identified using a Shapley values-based feature attribution method, SHAP values. Cox models controlled for false discovery rate were used for confounder adjustment, interpretability, and further validation. The pipeline was tested using information from 502,506 UK Biobank participants, aged 37–73 years at recruitment and followed over seven years for mortality registrations. From the 11,639 predictors included in GBDT, 193 potential risk factors had SHAP values ≥ 0.05, passed the correlation test, and were selected for further modelling. Of the total variable importance summed up, 60% was directly health related, and baseline characteristics, sociodemographics, and lifestyle factors each contributed about 10%. Cox models adjusted for baseline characteristics, showed evidence for an association with mortality for 166 out of the 193 predictors. These included mostly well-known risk factors (e.g., age, sex, ethnicity, education, material deprivation, smoking, physical activity, self-rated health, BMI, and many disease outcomes). For 19 predictors we saw evidence for an association in the unadjusted but not adjusted analyses, suggesting bias by confounding. Our GBDT-SHAP pipeline was able to identify relevant predictors ‘hidden’ within thousands of variables, providing an efficient and pragmatic solution for the first stage of hypothesis free risk factor identification.

Funder

National Health and Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3