A weighted-sum chaotic sparrow search algorithm for interdisciplinary feature selection and data classification

Author:

Jia LiYun,Wang Tao,Gad Ahmed G.,Salem Ahmed

Abstract

AbstractIn today’s data-driven digital culture, there is a critical demand for optimized solutions that essentially reduce operating expenses while attempting to increase productivity. The amount of memory and processing time that can be used to process enormous volumes of data are subject to a number of limitations. This would undoubtedly be more of a problem if a dataset contained redundant and uninteresting information. For instance, many datasets contain a number of non-informative features that primarily deceive a given classification algorithm. In order to tackle this, researchers have been developing a variety of feature selection (FS) techniques that aim to eliminate unnecessary information from the raw datasets before putting them in front of a machine learning (ML) algorithm. Meta-heuristic optimization algorithms are often a solid choice to solve NP-hard problems like FS. In this study, we present a wrapper FS technique based on the sparrow search algorithm (SSA), a type of meta-heuristic. SSA is a swarm intelligence (SI) method that stands out because of its quick convergence and improved stability. SSA does have some drawbacks, like lower swarm diversity and weak exploration ability in late iterations, like the majority of SI algorithms. So, using ten chaotic maps, we try to ameliorate SSA in three ways: (i) the initial swarm generation; (ii) the substitution of two random variables in SSA; and (iii) clamping the sparrows crossing the search range. As a result, we get CSSA, a chaotic form of SSA. Extensive comparisons show CSSA to be superior in terms of swarm diversity and convergence speed in solving various representative functions from the Institute of Electrical and Electronics Engineers (IEEE) Congress on Evolutionary Computation (CEC) benchmark set. Furthermore, experimental analysis of CSSA on eighteen interdisciplinary, multi-scale ML datasets from the University of California Irvine (UCI) data repository, as well as three high-dimensional microarray datasets, demonstrates that CSSA outperforms twelve state-of-the-art algorithms in a classification task based on FS discipline. Finally, a 5%-significance-level statistical post-hoc analysis based on Wilcoxon’s signed-rank test, Friedman’s rank test, and Nemenyi’s test confirms CSSA’s significance in terms of overall fitness, classification accuracy, selected feature size, computational time, convergence trace, and stability.

Funder

The Science and Technology Project of Hebei Education Department

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference87 articles.

1. Raja, J. B. & Pandian, S. C. Pso-fcm based data mining model to predict diabetic disease. Comput. Methods Progr. Biomed. 196, 105659 (2020).

2. Dhiman, G. & Kumar, V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl. Syst. 165, 169–196 (2019).

3. Singh, P. & Dhiman, G. Uncertainty representation using fuzzy-entropy approach: Special application in remotely sensed high-resolution satellite images (rshrsis). Appl. Soft Comput. 72, 121–139 (2018).

4. Zhao, L. & Dong, X. An industrial internet of things feature selection method based on potential entropy evaluation criteria. IEEE Access 6, 4608–4617 (2018).

5. Habib, M., Aljarah, I., Faris, H. & Mirjalili, S. Multi-objective particle swarm optimization: theory, literature review, and application in feature selection for medical diagnosis. Evol. Mach. Learn. Tech. 58, 175–201 (2020).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3