Enhanced Randomized Harris Hawk Optimization of PI controller for power flow control in the microgrid with the PV-wind-battery system

Author:

Pavan GollapudiORCID,Ramesh Babu A.

Abstract

Microgrids, characterized by their ability to work individually or in combination with the main power system, play a pivotal role in addressing the growing demand for reliable and sustainable energy solutions. This work concentrates on the integration of sustainable energy sources, specifically photovoltaic (PV), and wind generation and a battery storage system within a microgrid framework. Additionally, a power flow control strategy is implemented to enhance the dynamic behaviour and stability of the microgrid. The proportional-integral (PI) controller is a fundamental component in regulating the microgrid’s power flow, ensuring optimal performance under varying operating conditions. However, tuning the PI controller parameters is a difficult task because of the dynamic and nonlinear nature of renewable energy sources. In this work, the application of the Enhanced Randomized Harris Hawk Optimization (ERHHO) to fine-tune the PI controller is proposed, using the algorithm’s ability to mimic the hunting behaviour of hawks in finding optimal solutions. The PV-Wind-Battery microgrid system is modelled, and the proposed algorithm is employed to optimize the PI controller parameters for efficient energy management. The ERHHO algorithm’s exploration-exploitation balance is harnessed to navigate the complex solution space and converge to optimal PI controller settings, thereby enhancing the microgrid’s stability and performance. The study evaluates the effectiveness of the proposed ERHHO-based PI controller tuning through comprehensive simulations. Performance metrics such as transient response, overshoot, settling time, and steady-state error are analysed to validate the robustness and efficiency of the proposed method. Compared to its nearest optimization algorithm, with the proposed algorithm rise time is reduced by 50%, overshoot is reduced by 75%, settling time is reduced by 66%, and finally, a percentage of reduction of steady-state error is 45%. The outcomes of this research contribute to the advancement of microgrid control strategies, offering a novel approach to PI controller tuning in the context of diverse renewable energy sources. The integration of the Harris Hawk Optimization algorithm provides a promising avenue for enhancing the operational efficiency and reliability of microgrids, paving the way for sustainable and resilient energy systems in the aspect of growing energy landscapes.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3