Reduction of parasitic reaction in high-temperature AlN growth by jet stream gas flow metal–organic vapor phase epitaxy

Author:

Nagamatsu Kentaro,Tsuda Shota,Miyagawa Takumi,Aono Reiya,Hirayama Hideki,Takashima Yuusuke,Naoi Yoshiki

Abstract

AbstractAlGaN-based deep ultraviolet light-emitting diodes (LEDs) have a wide range of applications such as medical diagnostics, gas sensing, and water sterilization. Metal–organic vapor phase epitaxy (MOVPE) method is used for the growth of all-in-one structures, including doped layer and thin multilayers, using metal–organic and gas source raw materials for semiconductor devices. For AlN growth with high crystalline quality, high temperature is necessary to promote the surface migration of Al atoms and Al-free radicals. However, increase in temperature generates parasitic gas-phase prereactions such as adduct formation. In this work, AlN growth at 1500 °C by a stable vapor phase reaction has been achieved by jet stream gas flow metal–organic vapor phase epitaxy. The AlN growth rate increases with gas flow velocity and saturates at ~ 10 m/s at room temperature. Moreover, it is constant at an ammonia flow rate at a V/III ratio from 50 to 220. These results demonstrate the reduction in adduct formation, which is a typical issue with the vapor phase reaction between triethylaluminum and ammonia. The developed method provides the in-plane uniformity of AlN thickness within 5%, a low concentration of unintentionally doped impurities, smooth surface, and decrease in dislocation density because of the suppression of parasitic reactions.

Funder

JSPS KAKENHI Grant-in-Aid for Challenging Exploratory

The Project on the Promotion of Regional Industries and Universities, Cabinet Office

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3