Evaluating the performance of the Bayesian mixing tool MixSIAR with fatty acid data for quantitative estimation of diet

Author:

Guerrero Alicia I.,Rogers Tracey L.

Abstract

AbstractWe test the performance of the Bayesian mixing model, MixSIAR, to quantitatively predict diets of consumers based on their fatty acids (FAs). The known diets of six species, undergoing controlled-feeding experiments, were compared with dietary predictions modelled from their FAs. Test subjects included fish, birds and mammals, and represent consumers with disparate FA compositions. We show that MixSIAR with FA data accurately identifies a consumer’s diet, the contribution of major prey items, when they change their diet (diet switching) and can detect an absent prey. Results were impacted if the consumer had a low-fat diet due to physiological constraints. Incorporating prior information on the potential prey species into the model improves model performance. Dietary predictions were reasonable even when using trophic modification values (calibration coefficients, CCs) derived from different prey. Models performed well when using CCs derived from consumers fed a varied diet or when using CC values averaged across diets. We demonstrate that MixSIAR with FAs is a powerful approach to correctly estimate diet, in particular if used to complement other methods.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Scott Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3