Author:
Tanaka Aya,Kosuda Minami,Yamana Midori,Furukawa Asami,Nagasawa Akiko,Fujishiro Midori,Kohno Genta,Ishihara Hisamitsu
Abstract
AbstractMolecular mechanisms of glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells are not fully understood. GSIS deteriorations are believed to underlie the pathogenesis of type 2 diabetes mellitus. By comparing transcript levels of 3 insulin secreting MIN6 cell sublines with strong glucose-responsiveness and 3 with mildly reduced responsiveness, we identified 630 differentially expressed genes. Using our recently developed system based on recombinase-mediated cassette exchange, we conducted large-scale generation of stable clones overexpressing such genes in the doxycycline-regulated manner. We found that overexpressions of 18, out of 83, genes altered GSIS. Sox11 ((sex determining region Y)-box 11) was selected to confirm its roles in regulating insulin secretion, and the gene was subjected to shRNA-mediated suppression. While Sox11 overexpression decreased GSIS, its suppression increased GSIS, confirming the role of Sox11 as a negative regulator of insulin secretion. Furthermore, metabolic experiments using radiolabelled glucose showed Sox11 to participate in regulating glucose metabolism. Our data suggested that overexpression screening is a feasible option for systemic functional testing to identify important genes in GSIS.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献