Expression and function of an Hac1-regulated multi-copy xylanase gene in Saccharomyces cerevisiae

Author:

Bao Changjie,Li Jiping,Chen Huan,Sun Yang,Wang Gang,Chen Guang,Zhang Sitong

Abstract

AbstractSaccharomyces cerevisiae-based expression systems, which rely on safe, food-grade strains, are low cost, simple to operate, and can be used for large-scale fermentation. However, low levels of foreign protein expression by S. cerevisiae have limited their widespread application. The ability of the endoplasmic reticulum (ER) to fold and process foreign proteins is an important factor restricting the expression of foreign proteins. In the current study, the effects of transcription factor Hac1p, which is involved in the unfolded protein response pathway, on S. cerevisiae-based expression of xylanase gene xynB from Aspergillus niger were examined. Overlap extension polymerase chain reaction (PCR), rDNA integration and droplet digital PCR technology were used to generate a S. cerevisiae strain (S8) containing eight copies of xynB, allowing high-yield secretory expression of xylanase. The effects of subsequent overexpression of HAC1 in strain S8 on the expression of genes associated with protein folding in the ER were then examined using the GeXP system. Results confirmed the constitutive secretory expression of the multiple copies of xynB following rDNA-based integration of the expression cassette, with a maximum xylanase yield of 325 U/mL. However, overexpression of HAC1 further improved xylanase production by strain S8, resulting in a yield of 381 U/mL.

Funder

the National Key R

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3