Environmental influences on light response parameters of net carbon exchange in two rotation croplands on the North China Plain

Author:

Bao Xueyan,Li Zhigang,Xie Futi

Abstract

AbstractThe ecosystem light response parameters, i.e. apparent quantum yield (α), maximum rate of ecosystem gross photosynthesis (Amax), and daytime ecosystem respiration (Rd), are very important when estimating regional carbon budgets. But they are not well understood in double cropping systems. Here, continuous flux data were collected from two rotation croplands in Yucheng (YC) and in Luancheng (LC) to describe the among-year variations in α, Amax, and Rd, and to investigate variation mechanism on an annual scale. The three parameters exhibited marked fluctuations during the observation years. The annual α, Amax, and Rd ranged from 0.0022–0.0059 mg CO2 μmol photon−1, from 2.33–4.43 mg CO2 m−2 s−1, and from 0.19–0.47 mg CO2 m−2 s−1 at YC, and from 0.0016–0.0021 mg CO2 μmol photon−1, from 3.00–6.30 mg CO2 m−2 s−1, and from 0.06–0.19 mg CO2 m−2 s−1 at LC, respectively. Annual α and Rd declined significantly when vapor pressure deficit (VPD) exceeded 1.05 kPa and increased significantly when canopy conductance (gc) exceed 6.33 mm/s at YC, but changed slightly when VPD and gc exceeded 1.16 kPa and 7.77 mm/s at LC, respectively. The fact that the negative effects of VPD and gc on α and Rd at LC were not as significant as they were at YC may be attributed to different climate conditions and planting species. A negative relationship (R2 = 0.90 for YC and 0.89 for LC) existed between VPD and gc. Therefore, the VPD, through its negative effect on gc, inhibited α and Rd indirectly. Among-year Amax variation was mainly influenced by the annual mean surface soil temperature (Ts) of non-growing season of wheat significantly (R2 = 0.59, P < 0.01). Therefore, in future climate change scenarios, these environmental effects need to be included in carbon cycle models so that the accuracy of the carbon budget estimation can be improved.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3