Environmental influences on carbon dioxide fluxes over three grassland ecosystems in China

Author:

Fu Y.,Zheng Z.,Yu G.,Hu Z.,Sun X.,Shi P.,Wang Y.,Zhao X.

Abstract

Abstract. This study compared carbon dioxide (CO2) fluxes over three grassland ecosystems in China, including a temperate semiarid steppe in Inner Mongolia (NMG), an alpine shrub-meadow in Qinghai (HB), and an alpine meadow-steppe in Tibet (DX). Measurements were made in 2004 and 2005 using the eddy covariance technique. Objectives were to document the seasonality of the net ecosystem exchange of CO2 (NEE) and its components, gross ecosystem photosynthesis (GEP), and ecosystem respiration (Reco), and to examine how environmental factors affect the CO2 exchange in these grassland ecosystems. The 2005 growing season (from May to September) was warmer than that of 2004 across the three sites, and precipitation in 2005 was less than that in 2004 at NMG and DX. The magnitude of CO2 fluxes (daily and annual sums) was largest at HB, which also showed the highest temperature sensitivity of Reco among the three sites. A stepwise multiple regression analysis showed that the seasonal variation of GEP, Reco, and NEE of the alpine shrub-meadow was mainly controlled by air temperature, whereas leaf area index can likely explain the seasonal variation in GEP, Reco, and NEE of the temperate steppe. The CO2 fluxes of the alpine meadow-steppe were jointly affected by soil moisture and air temperature. The alpine shrub-meadow acted as a net carbon sink over the two study years, whereas the temperate steppe and alpine meadow-steppe acted as net carbon sources. Both GEP and Reco were reduced by the summer and spring drought in 2005 at NMG and DX, respectively. The accumulated leaf area index during the growing season (LAIsum) played a key role in the interannual and intersite variation of annual GEP and Reco across the study sites and years, whereas soil moisture contributed most significantly to the variation in annual NEE. Because LAIsum was significantly correlated with soil moisture at a depth of 20 cm, we concluded that the available soil moisture other than annual precipitation was the most important factor controlling the variation in the CO2 budgets of different grassland ecosystems in China.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3