Online hate network spreads malicious COVID-19 content outside the control of individual social media platforms

Author:

Velásquez N.,Leahy R.,Restrepo N. Johnson,Lupu Y.,Sear R.,Gabriel N.,Jha O. K.,Goldberg B.,Johnson N. F.

Abstract

AbstractWe show that malicious COVID-19 content, including racism, disinformation, and misinformation, exploits the multiverse of online hate to spread quickly beyond the control of any individual social media platform. We provide a first mapping of the online hate network across six major social media platforms. We demonstrate how malicious content can travel across this network in ways that subvert platform moderation efforts. Machine learning topic analysis shows quantitatively how online hate communities are sharpening COVID-19 as a weapon, with topics evolving rapidly and content becoming increasingly coherent. Based on mathematical modeling, we provide predictions of how changes to content moderation policies can slow the spread of malicious content.

Funder

John S. and James L. Knight Foundation

National Science Foundation

Air Force Office of Scientific Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamics of hate speech in social media: insights from Indonesia;Global Knowledge, Memory and Communication;2024-08-30

2. Online communities come with real-world consequences for individuals and societies;Communications Psychology;2024-08-02

3. An agent-based model of cross-platform information diffusion and moderation;Social Network Analysis and Mining;2024-07-26

4. Detection of Misinformation Related to Pandemic Diseases using Machine Learning Techniques in Social Media Platforms;EAI Endorsed Transactions on Pervasive Health and Technology;2024-06-28

5. Fighting against Fake News on Newly-Emerging Crisis: A Case Study of COVID-19;Companion Proceedings of the ACM Web Conference 2024;2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3