Characterization of carrier behavior in photonically excited 6H silicon carbide exhibiting fast, high voltage, bulk transconductance properties

Author:

Sampayan S. E.,Grivickas P. V.,Conway A. M.,Sampayan K. C.,Booker I.,Bora M.,Caporaso G. J.,Grivickas V.,Nguyen H. T.,Redeckas K.,Schoner A.,Voss L. F.,Vengris M.,Wang L.

Abstract

AbstractUnabated, worldwide trends in CO2 production project growth to > 43-BMT per year over the next two decades. Efficient power electronics are crucial to fully realizing the CO2 mitigating benefits of a worldwide smart grid (~ 18% reduction for the United States alone). Even state-of-the-art SiC high voltage junction devices are inefficient because of slow transition times (~ 0.5-μs) and limited switching rates at high voltage (~ 20-kHz at ≥ 15-kV) resulting from the intrinsically limited charge carrier drift speed (< 2 × 107-cm-s−1). Slow transition times and limited switch rates waste energy through transition loss and hysteresis loss in external magnetic components. Bulk conduction devices, where carriers are generated and controlled nearly simultaneously throughout the device volume, minimize this loss. Such devices are possible using below bandgap excitation of semi-insulating (SI) SiC single crystals. We explored carrier dynamics with a 75-fs single wavelength pump/supercontinuum probe and a modified transient spectroscopy technique and also demonstrated a new class of efficient, high-speed, high-gain, bi-directional, optically-controlled transistor-like power device. At a performance level six times that of existing devices, for the first time we demonstrated prototype operation at multi-10s of kW and 20-kV, 125-kHz in a bulk conduction transistor-like device using direct photon-carrier excitation with below bandgap light.

Funder

U.S. Department of Energy

Advanced Research Projects Agency - Energy

National Science Foundation, United States

State of California, CalSEED

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference39 articles.

1. Macilwain, C. Supergrid. Nature 468, 624–625 (2010).

2. Gellings, C. W. A globe spanning super grid. IEEE Spectr. 52(8), 48–54 (2015).

3. Kizilyalli, I. C., Xu, Y. A., Carlson, E., Manser, J. & Cunningham, D. W. Keynote: Current and Future Directions in Power Electronic Devices and Circuits Based on Wide Band-Gap Semiconductors, Presented at Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Albuquerque, 2017 (unpublished).

4. Pratt, R. G. et al. The Smart Grid: An Estimation of the Energy and Carbon Dioxide Benefits. United States Department of Energy, Pacific Northwest National Laboratory, Richland, WA USA99352 (2010).

5. Mizuno, A., Inoue, T., Yamaguchi, S. & Sakamoto, K. Inactivation of Viruses Using Pulsed Electric Fields, Presented at 1990 IEEE Industry Applications Society Annual Meeting, Seattle, WA, 1990 (unpublished).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3