Estimating the strength of soil stabilized with cement and lime at optimal compaction using ensemble-based multiple machine learning

Author:

Onyelowe Kennedy C.,Moghal Arif Ali Baig,Ebid Ahmed,Rehman Ateekh Ur,Hanandeh Shadi,Priyan Vishnu

Abstract

AbstractIt has been imperative to study and stabilize cohesive soils for use in the construction of pavement subgrade and compacted landfill liners considering their unconfined compressive strength (UCS). As long as natural cohesive soil falls below 200 kN/m2 in strength, there is a structural necessity to improve its mechanical property to be suitable for the intended structural purposes. Subgrades and landfills are important environmental geotechnics structures needing the attention of engineering services due to their role in protecting the environment from associated hazards. In this research project, a comparative study and suitability assessment of the best analysis has been conducted on the behavior of the unconfined compressive strength (UCS) of cohesive soil reconstituted with cement and lime and mechanically stabilized at optimal compaction using multiple ensemble-based machine learning classification and symbolic regression techniques. The ensemble-based ML classification techniques are the gradient boosting (GB), CN2, naïve bayes (NB), support vector machine (SVM), stochastic gradient descent (SGD), k-nearest neighbor (K-NN), decision tree (Tree) and random forest (RF) and the artificial neural network (ANN) and response surface methodology (RSM) to estimate the (UCS, MPa) of cohesive soil stabilized with cement and lime. The considered inputs were cement (C), lime (Li), liquid limit (LL), plasticity index (PI), optimum moisture content (OMC), and maximum dry density (MDD). A total of 190 mix entries were collected from experimental exercises and partitioned into 74–26% train-test dataset. At the end of the model exercises, it was found that both GB and K-NN models showed the same excellent accuracy of 95%, while CN2, SVM, and Tree models shared the same level of accuracy of about 90%. RF and SGD models showed fair accuracy level of about 65–80% and finally (NB) badly producing an unacceptable low accuracy of 13%. The ANN and the RSM also showed closely matched accuracy to the SVM and the Tree. Both of correlation matrix and sensitivity analysis indicated that UCS is greatly affected by MDD, then the consistency limits and cement content, and lime content comes in the third place while the impact of (OMC) is almost neglected. This outcome can be applied in the field to obtain optimal compacted for a lime reconstituted soil considering the almost negligible impact of compactive moisture.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3