Author:
Onyelowe Kennedy C.,Ebid Ahmed M.,Hanandeh Shadi
Publisher
Springer Science and Business Media LLC
Subject
Civil and Structural Engineering
Reference50 articles.
1. Ahmad, A., Ahmad, W., Chaiyasarn, K., Ostrowski, K. A., Aslam, F., Zajdel, P., & Joyklad, P. (2021). Prediction of geopolymer concrete compressive strength using novel machine learning algorithms. Polymers, 13(19), 3389.
2. Akash, K., & Singh, G. (2018). Effect of nano silica on the fresh and hardened properties of cement 687 mortar. International Journal of Applied Engineering Research, 13(2018), 11183–11188.
3. Awoyera, P. O., Kirgiz, M. S., Viloria, A., & Ovallos-Gazabon, D. (2020). Estimating strength properties of geopolymer self-compacting concrete using machine learning techniques. Journal of Materials Research and Technology, 9(4), 9016–9028. https://doi.org/10.1016/j.jmrt.2020.06.008
4. Azim, I., Yang, J., Farjad Iqbal, M., Faisal Javed, M., Nazar, S., Wang, F., & Liu, Q. (2020). A semi-analytical model for compressive arch action capacity of RC frame structures. Structures, 27, 1231–1245. https://doi.org/10.1016/j.istruc.2020.06.011
5. Azim, I., Yang, J., Iqbal, M. F., Mahmood, Z., Javed, M. F., Wang, F., & Liu, Q. (2021). Prediction of catenary action capacity of RC beam-column substructures under a missing column scenario using evolutionary algorithm. KSCE Journal of Civil Engineering, 25(3), 891–905. https://doi.org/10.1007/s12205-021-0431-0
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献