Salinity effects on the strength and morphological indices of soft marine clay

Author:

Geng Weijuan,Han Wenxia,Yin Jie,Lu Zhijun

Abstract

AbstractThis study evaluates the strength behaviors and morphological characteristics of Lianyungang marine clay under the effect of porewater salinity. Soil at higher salinity was found to have increased internal friction angle and undrained shear strength. The difference in undrained shear strength enlarges as the confining pressure increases. Different stress paths were exhibited with soil at different salinities. Soil morphology analysis including scanning electron microscopy (SEM) and Image-Pro Plus (IPP) were employed to investigate the underlying mechanism of the enhanced strength behaviors of soft marine clay with increased salinity. Aggregated soil fabric was observed at higher salinity and contributed to enhanced strength. The results demonstrate that the aggregated soil structure is the primary mechanism responding to the enhanced strength behavior of marine clay under relatively high salinity (6%). Quantitative relationships were developed between the strength parameters and morphological characteristics of soil, i.e., area of particles, roundness of particles, area of pores, pore orientation, and fractal dimension of pore distribution, in the forms of empirical equations, and are expected to serve as the references for prediction in undrained behaviors of soft marine clays with known soil index.

Funder

Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3