Efficient few-shot machine learning for classification of EBSD patterns

Author:

Kaufmann Kevin,Lane Hobson,Liu Xiao,Vecchio Kenneth S.

Abstract

AbstractDeep learning is quickly becoming a standard approach to solving a range of materials science objectives, particularly in the field of computer vision. However, labeled datasets large enough to train neural networks from scratch can be challenging to collect. One approach to accelerating the training of deep learning models such as convolutional neural networks is the transfer of weights from models trained on unrelated image classification problems, commonly referred to as transfer learning. The powerful feature extractors learned previously can potentially be fine-tuned for a new classification problem without hindering performance. Transfer learning can also improve the results of training a model using a small amount of data, known as few-shot learning. Herein, we test the effectiveness of a few-shot transfer learning approach for the classification of electron backscatter diffraction (EBSD) pattern images to six space groups within the $$\left( {4/m \overline {3} 2/m} \right)$$ 4 / m 3 ¯ 2 / m point group. Training history and performance metrics are compared with a model of the same architecture trained from scratch. In an effort to make this approach more explainable, visualization of filters, activation maps, and Shapley values are utilized to provide insight into the model’s operations. The applicability to real-world phase identification and differentiation is demonstrated using dual phase materials that are challenging to analyze with traditional methods.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3